Using Adaptive Alert Classification to Reduce False Positives in Intrusion Detection

نویسنده

  • Tadeusz Pietraszek
چکیده

Intrusion Detection Systems (IDSs) are used to monitor computer systems for signs of security violations. Having detected such signs, IDSs trigger alerts to report them. These alerts are presented to a human analyst, who evaluates them and initiates an adequate response. In practice, IDSs have been observed to trigger thousands of alerts per day, most of which are false positives (i.e., alerts mistakenly triggered by benign events). This makes it extremely difficult for the analyst to correctly identify the true positives (i.e., alerts related to attacks). In this paper we describe ALAC, the Adaptive Learner for Alert Classification, which is a novel system for reducing false positives in intrusion detection. The system supports the human analyst by classifying alerts into true positives and false positives. The knowledge of how to classify alerts is learned adaptively by observing the analyst. Moreover, ALAC can be configured to process autonomously alerts that have been classified with high confidence. For example, ALAC may discard alerts that were classified with high confidence as false positive. That way, ALAC effectively reduces the analyst’s workload. We describe a prototype implementation of ALAC and the choice of a suitable machine learning technique. Moreover, we experimentally validate ALAC and show how it facilitates the analyst’s work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomaly Network Intrusion Detection Based on Improved Self Adaptive Bayesian Algorithm

Recently, research on intrusion detection in computer systems has received much attention to the computational intelligence society. Many intelligence learning algorithms applied to the huge volume of complex and dynamic dataset for the construction of efficient intrusion detection systems (IDSs). Despite of many advances that have been achieved in existing IDSs, there are still some difficulti...

متن کامل

A Novel Signature-based Traffic Classification Engine to Reduce False Alarms in Intrusion Detection Systems

Pattern matching plays a significant role in ascertaining network attacks and the foremost prerequisite for a trusted intrusion detection system (IDS) is accurate pattern matching. During the pattern matching process packets are scanned against a pre-defined rule sets. After getting scanned, the packets are marked as alert or benign by the detection system. Sometimes the detection system genera...

متن کامل

ATLANTIDES: Automatic Configuration for Alert Verification in Network Intrusion Detection Systems

We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network services. The false positives raised by the NIDS analyzing the incoming traffic (which can be either...

متن کامل

An Outlier Detection-Based Alert Reduction Model

Intrusion Detection Systems (IDSs) are widely deployed with increasing of unauthorized activities and attacks. However they often overload security managers by triggering thousands of alerts per day. And up to 99% of these alerts are false positives (i.e. alerts that are triggered incorrectly by benign events). This makes it extremely difficult for managers to correctly analyze security state a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004